19 research outputs found

    A robotic honeycomb for interaction with a honeybee colony

    Get PDF
    Abstract: Robotic technologies have shown the capability to interact with living organisms and even to form integrated mixed societies comprised of living and artificial agents. Bio-compatible robots, incorporating sensing and actuation capable of generating and responding to relevant stimuli, can be a tool to study collective behaviors previously unattainable with traditional techniques. To investigate collective behaviors of the western honeybee (Apis mellifera), we designed a robotic system capable of observing and modulating the bee cluster using an array of thermal sensors and actuators. We initially integrated the system into a beehive populated with approximately 4,000 bees for several months. The robotic system was able to observe the colony by continuously collecting spatio- temporal thermal profiles of the winter cluster. Furthermore, we found that our robotic device reliably modulated the superorganism’s response to dynamic thermal stimulation, influencing its spatiotemporal re-organization. In addition, after identifying the thermal collapse of a colony, we used the robotic system in a “life-support” mode via its thermal actuators. Ultimately, we demonstrated a robotic device capable of autonomous closed-loop interaction with a cluster comprising thousands of individual bees. Such biohybrid societies open the door to investigation of collective behaviors that necessitate observing and interacting with the animals within a complete social context, as well as for potential applications in augmenting the survivability of these pollinators crucial to our ecosystems and our food supply. This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science Robotics, Vol. 8, 76, Mar 2023, DOI: 10.1126/scirobotics.add7385 https://doi.org/10.1126/scirobotics.add738

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    A Minimally Invasive Approach Towards “Ecosystem Hacking” With Honeybees

    No full text
    Honey bees live in colonies of thousands of individuals, that not only need to collaborate with each other but also to interact intensively with their ecosystem. A small group of robots operating in a honey bee colony and interacting with the queen bee, a central colony element, has the potential to change the collective behavior of the entire colony and thus also improve its interaction with the surrounding ecosystem. Such a system can be used to study and understand many elements of bee behavior within hives that have not been adequately researched. We discuss here the applicability of this technology for ecosystem protection: A novel paradigm of a minimally invasive form of conservation through “Ecosystem Hacking”. We discuss the necessary requirements for such technology and show experimental data on the dynamics of the natural queen’s court, initial designs of biomimetic robotic surrogates of court bees, and a multi-agent model of the queen bee court system. Our model is intended to serve as an AI-enhanceable coordination software for future robotic court bee surrogates and as a hardware controller for generating nature-like behavior patterns for such a robotic ensemble. It is the first step towards a team of robots working in a bio-compatible way to study honey bees and to increase their pollination performance, thus achieving a stabilizing effect at the ecosystem level

    A Simple Method to Determine Electrospray Response Factors of Noncovalent Complexes

    Full text link
    The quantitative study of noncovalent complexes by electrospray mass spectrometry requires the determination of the relative response of each species. The method proposed here to determine the electrospray response factors is based on the use of (1) an internal standard and (2) the mass balance equation applied to one binding partner M, for which different complexes MxLy are detected in the electrospray mass spectra. A set of experiments providing various ratios between the complexes (e.g. different ligand concentrations in a titration experiment or different time points in a kinetics experiment) is used to generate a set of independent linear equations that can be solved using simple matrix algebra to find the response factors of each MxLy complex relative to that of the internal standard. The response factors can then be used to determine equilibrium dissociation constants or for the quantitative monitoring of reaction kinetics. The first is illustrated with a study of DNA-ligand complexes, where we show that neither minor groove binding nor intercalation dramatically affects the DNA response factor. The second is illustrated with a study of the association kinetics of the telomeric G-quadruplex dGGG(TTAGGG)3 with its complementary strand, where the response factors allow correcting for the relative response of the quadruplex and the long duplex and obtaining reproducible association rate constants independently of the source tuning potentials

    Correlating solution binding and ESI-MS stabilities by incorporating solvation effects in a confined cucurbit[8]uril system.

    No full text
    The high-throughput characterization of solution binding equilibria is essential in biomedical research such as drug design as well as in material applications of synthetic systems in which reversible binding interactions play critical roles. Although isothermal titration calorimetry (ITC) has been widely employed for describing such binding events, factors such as speed, concentration, and sample complexity would principally favor a mass spectrometry approach. Here, we show a link between ITC and electrospray ionization mass spectrometry (ESI-MS) by incorporating solvation free energies in the study of the ternary complexes of the macrocyclic host cucurbit[8]uril (CB[8]). The binding affinities of 32 aromatic reference complexes were studied by ITC and ESI-MS and combined with solvation data of the guests from an implicit solvation model (SM8) to obtain a correlation between aqueous and gas-phase measurements. The data illustrates the critical importance of solvation on the binding strength in CB[8]'s ternary complexes. Finally, this treatment enabled us to predict association constants that were in excellent agreement with measured values, including several highly insoluble guest compounds.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore